Springer resolution

In mathematics, the Springer resolution is a resolution of the variety of nilpotent elements in a semisimple Lie algebra, or the unipotent elements of a reductive algebraic group, introduced by Springer (1969). The fibers of this resolution are called Springer fibers.

If U is the variety of unipotent elements in a reductive group G, and X the variety of Borel subgroups B, then the Springer resolution of U is the variety of pairs (u,B) of G×X such that u is in the Borel subgroup B. The map to U is the projection to the first factor.

References